Geometry and equations illustrating how to calculate surface offset
given scarp length (L), scarp angle (θ_{s}), footwall
(θ_{f}), and hanging wall (θ_{h}) far-field
slope angles, where θ_{f} ≠ θ_{h}.

Given:

- Scarp Length, L =
- Scarp Angle, θ
_{s}= - Far-field Slope Angles of
- Footwall, θ
_{f}= - Hanging Wall, θ
_{h}=

- Footwall, θ

If θ_{f} ≠ θ_{h}, break the calculation into
two parts, as follows:

x'_{f} = ½ × L × sin θ_{s} =

z_{f} = ( (½ × L)^{2} - x'_{f}^{2} )^{½} =

x_{f} = z_{f} × tan θ_{f} =

y_{f} = x'_{f} - x_{f} =

x'_{h} = ½ × L × sin θ_{s} =

z_{h} = ( (½ × L)^{2} - x'_{h}^{2} )^{½} =

x_{h} = z_{h} × tan θ_{h} =

y_{h} = x'_{h} - x_{h} =

S = y_{f} + y_{h} =